INITIAL CONDITION RESPONSE OF A VISCOELASTIC DYNAMICAL SYSTEM IN THE PRESENCE OF DRY FRICTION AND IDENTIFICATION OF SYSTEM PARAMETERS

R. Singh, P. Davies and A. K. Bajaj
Ray W. Herrick Laboratories, School of Mechanical Engineering, Purdue University, W. Lafayette IN 47907-1077, U.S.A.

(Received 24 May 2000)

1. INTRODUCTION

Physical systems exhibit several mechanisms for loss of energy. Depending upon acceptable levels of approximations for a particular system, one or more models for different damping mechanisms would need to be incorporated into a model of the system. Viscous and Coulomb friction are among the most commonly used models for damping in elastic solids. Viscoelastic solids, such as foam, are known to exhibit several mechanisms for loss of energy [1]. These include small strain viscoelastic damping of the cellular matrix, pneumatic damping, hysteresis at medium to large deformations and thermal energy dissipation. Also, energy loss occurs because of excitation and emission of elastic waves resulting from interaction of rubbing surfaces in the viscoelastic medium, which can be described by a dry friction model [2].

For a dynamic viscoelastic system, a simple model can be developed by using a linear constitutive relation for the stress-strain behavior of the material. Hereditary models of viscoelasticity are popular candidates for this purpose. In the case of a single-degree-of-freedom dynamic system, the characteristics of the viscoelastic solid can be modelled by means of linear stiffness and viscous damping terms along with certain viscoelastic terms. One such model has been considered by Muravyov and Hutton [3], where the authors have presented a closed-form solution for the response of the system. In the present work, we have used this model to develop a procedure for obtaining the free response of the system in the presence of dry friction.

In the case of elastic systems, the free vibration response can be utilized for estimation of viscous and Coulomb friction effects [4,5]. Here we utilize the free response solution developed for the viscoelastic system with dry friction, along with a modified Prony series modelling technique [7] for estimating the parameters of the system. The acceleration response of the system to arbitrary initial velocities is used for the estimation procedure, because in an actual experiment with such systems, the acceleration would typically be the measured response variable.

2. INITIAL CONDITION RESPONSE

Consider a linear single-degree-of-freedom dynamic system where the restoring forces are attributed to a linear viscoelastic material. The stress-strain relationship for such a material
can be expressed as

$$
\begin{equation*}
\sigma(t)=E\left\{\varepsilon(t)-\int_{0}^{t} \Gamma(t-\tau) \varepsilon(\tau) \mathrm{d} \tau\right\} \tag{1}
\end{equation*}
$$

where $\Gamma(t)$ is the relaxation kernel of the material and E is the instantaneous Young's modulus. A common form of the relaxation kernel often used in the literature is that in the form of a sum of exponentials:

$$
\begin{equation*}
\Gamma(t)=\sum_{i=1}^{N} a_{i} \mathrm{e}^{-\alpha_{i} t} . \tag{2}
\end{equation*}
$$

The equation of motion of the dynamical system then becomes

$$
\begin{equation*}
m \ddot{x}+c \dot{x}+k x-k \int_{0}^{t} \sum_{i=1}^{N} a_{i} \mathrm{e}^{-\alpha_{i}(t-\tau)} x(\tau) \mathrm{d} \tau=-f(t) \tag{3}
\end{equation*}
$$

where x represents the displacement of the mass m from the equilibrium position $\left(x^{*}\right), c$ and k are the viscous damping coefficient and stiffness of the system, and a_{i} and α_{i} are the viscoelastic material parameters. The motion is assumed to start at time $t=0$. The initial displacement $x(0)$ is taken to be zero to avoid ambiguity in the assumed model. $x(0)=0$ is implied by the lower limit of the integral being zero which represents the fact that $x(t)=0$, for $t<0 . f(t)$ represents the dry friction force, modelled by Coulomb friction as $f(t)=f_{0} \operatorname{sgn}(\dot{x}), \dot{x} \neq 0$, where f_{0} is a constant representing the kinetic friction force. Note that the uncertainty in the determination of dry friction at zero velocity leads to a corresponding uncertainty in locating the equilibrium point. Consequently, a "sticky" region for the location of the equilibrium positions exists, given by $-x_{s} \leqslant x^{*} \leqslant x_{s}$, where $x_{s}=f_{s} / k\left(1-\sum_{i=1}^{N} a_{i} / \alpha_{i}\right)$, and f_{s} is the maximum static friction force.

For $\dot{x} \neq 0$, equation (3) is piecewise solvable, and can be written as

$$
\begin{align*}
& m \ddot{x}+c \dot{x}+k x-k \int_{0}^{t} \sum_{i=1}^{N} a_{i} \mathrm{e}^{-\alpha_{i}(t-\tau)} x(\tau) \mathrm{d} \tau=-f_{0}, \quad \dot{x}>0, \tag{4}\\
& m \ddot{x}+c \dot{x}+k x-k \int_{0}^{t} \sum_{i=1}^{N} a_{i} \mathrm{e}^{-\alpha_{i}(t-\tau)} x(\tau) \mathrm{d} \tau=f_{0}, \quad \dot{x}<0 . \tag{5}
\end{align*}
$$

Each continuous piece of motion during which velocity does not change sign is called a half-cycle. In the absence of dry friction, the solution of equation (3) will consist of $N+2$ exponentials [3] (except when the system eigenvalues are not all distinct). Dry friction introduces an additional constant term (DC) in the solution. It will be shown below that, in the presence of dry friction, the solution for the i th half-cycle is of the form

$$
\begin{equation*}
x(t)=K_{i}+\sum_{j=1}^{N+2} C_{j}^{i} \mathrm{e}^{p_{j} t}, \quad i=1,2,3, \ldots, \tag{6}
\end{equation*}
$$

where K_{i} and the coefficients C_{j}^{i} are constants, which are different for each half-cycle of the response. Since the homogeneous solution of the above equations remains the same in each half-cycle, the coefficients p_{j} in the exponential terms do not change from one half-cycle to another. The closed form solution, in different half-cycles, is derived here by substituting the above solution form into the differential equation and using the initial conditions at the start of the half-cycles.

2.1. MOTION DURING THE FIRST HALF-CYCLE

Suppose the initial conditions for the response are such that $\dot{x}(0)>0$. Then, for the first half-cycle of the motion when $\dot{x}(t) \geqslant 0$, the response is governed by equation (4). Let the solution be

$$
\begin{equation*}
x(t)=K_{1}+\sum_{j=1}^{N+2} C_{j}^{1} \mathrm{e}^{p_{j} t}, \quad 0 \leqslant t \leqslant t_{1} \tag{7}
\end{equation*}
$$

where the subscript on K and the superscript on C_{j} indicate correspondence to the first half-cycle, and time t_{1} is such that $\dot{x}\left(t_{1}\right)=0$. The constant K_{1} denotes the contribution of the particular solution arising because of friction. Substitution of equation (7) into equation (4) yields

$$
\begin{align*}
& m \sum_{j=1}^{N+2} C_{j}^{1} p_{j}^{2} \mathrm{e}^{p_{j} t}+c \sum_{j=1}^{N+2} C_{j}^{1} p_{j} \mathrm{e}^{p_{j} t}+k\left\{K_{1}+\sum_{j=1}^{N+2} C_{j}^{1} \mathrm{e}^{p_{j} t}\right\} \\
& \quad-k K_{1} \sum_{i=1}^{N} \frac{a_{i}}{\alpha_{i}}\left(1-\mathrm{e}^{-\alpha_{i} t}\right)-k \sum_{j=1}^{N+2} C_{j}^{1} \sum_{i=1}^{N} a_{i} \frac{\mathrm{e}^{\left(\alpha_{i}+p_{j}\right) t}-1}{\alpha_{i}+p_{j}} \mathrm{e}^{-\alpha_{i} t}=-f_{0} \tag{8}
\end{align*}
$$

By regrouping and equating the constants, the coefficients of $\mathrm{e}^{p_{j} t}$, and the coefficients of $\mathrm{e}^{-\alpha_{i} t}$ on either sides of equation (8), the following equations are obtained:

$$
\begin{gather*}
m p_{j}^{2}+c p_{j}+k-k \sum_{i=1}^{N} \frac{a_{i}}{\alpha_{i}+p_{j}}=0, \quad j=1,2, \ldots, N+2, \tag{9}\\
\frac{K_{1}}{\alpha_{i}}+\sum_{j=1}^{N+2} \frac{C_{j}^{1}}{\alpha_{i}+p_{j}}=0, \quad i=1,2, \ldots, N, \tag{10}\\
K_{1}-K_{1} \sum_{i=1}^{N} \frac{a_{i}}{\alpha_{i}}=-\frac{f_{0}}{k} . \tag{11}
\end{gather*}
$$

The initial conditions yield two additional equations:

$$
\begin{equation*}
K_{1}+\sum_{j=1}^{N+2} C_{j}^{1}=x(0)=0, \quad \sum_{j=1}^{N+2} C_{j}^{1} p_{j}=\dot{x}(0)=\dot{x}_{0} . \tag{12,13}
\end{equation*}
$$

Equation (9) is the characteristic equation of the system, whose roots are the coefficients p_{j}, $j=1,2, \ldots, N+2$, which are the eigenvalues of the system. The solution to equation (11) yields K_{1}, while the coefficients C_{j}^{1} can be obtained by solving a set of $N+2$ linear equations, given by equations (10), (12) and (13). Here it is assumed that the eigenvalues are all distinct.

2.2. MOTION DURING THE SECOND HALF-CYCLE

In this part of the motion, velocity is negative. The equation of motion thus takes the form

$$
\begin{align*}
& m \ddot{x}+c \dot{x}+k x-k \int_{0}^{t_{1}} \sum_{i=1}^{N} a_{i} \mathrm{e}^{-\alpha_{i}(t-\tau)} x(\tau) \mathrm{d} \tau \\
& \quad-k \int_{t_{1}}^{t} \sum_{i=1}^{N} a_{i} \mathrm{e}^{-\alpha_{i}(t-\tau)} x(\tau) \mathrm{d} \tau=f_{0}, \quad t_{1} \leqslant t \leqslant t_{2}, \tag{14}
\end{align*}
$$

where $x(\tau)$ in the first integral is already known from the first half-cycle and is given by equation (7). This integral represents the "memory" the system has of its motion during the first half-cycle. Substituting $x(t), t \leqslant t_{1}$, from equation (7) into equation (14) results in

$$
\begin{align*}
m \ddot{x} & +c \dot{x}+k x-k \int_{t_{1}}^{t} \sum_{i=1}^{N} a_{i} \mathrm{e}^{-\alpha_{i}(t-\tau)} x(\tau) \mathrm{d} \tau \\
& =f_{0}+k \sum_{i=1}^{N} a_{i}\left\{K_{1}\left(\frac{\mathrm{e}^{-\alpha_{i} t_{1}}-1}{\alpha_{i}}\right)+\sum_{j=1}^{N+2} C_{j}^{1}\left(\frac{\mathrm{e}^{\left(\alpha_{i}+p_{j}\right) t_{1}}-1}{\alpha_{i}+p_{j}}\right)\right\} \mathrm{e}^{-\alpha_{i} t} \tag{15}
\end{align*}
$$

Thus, the motion of the system during the first half-cycle contributes N extra terms to the forcing function. The most general form of solution will have $2 N+3$ terms and can be written as

$$
\begin{equation*}
x(t)=K_{2}+\sum_{j=1}^{N+2} C_{j}^{2} \mathrm{e}^{q_{j} t}+\sum_{l=1}^{N} D_{l} \mathrm{e}^{-\alpha_{i} t} \tag{16}
\end{equation*}
$$

where the exponents q_{j} correspond to the homogeneous solution. Substituting equation (16) into equation (15), we get

$$
\begin{align*}
& m\left\{\sum_{j=1}^{N+2} C_{j}^{2} q_{j}^{2} \mathrm{e}^{q_{j} t}+\sum_{l=1}^{N} D_{l} \alpha_{l}^{2} \mathrm{e}^{-\alpha_{i} t}\right\}+c\left\{\sum_{j=1}^{N+2} C_{j}^{2} q_{j} \mathrm{e}^{q_{j} t}-\sum_{l=1}^{N} D_{l} \alpha_{l} \mathrm{e}^{-\alpha_{l} t}\right\} \\
&+k\left\{K_{2}+\sum_{j=1}^{N+2} C_{j}^{2} \mathrm{e}^{q_{j} t}+\sum_{l=1}^{N} D_{l} \mathrm{e}^{-\alpha_{i} t}\right\} \\
&-k\left[\sum_{i=1}^{N} \frac{a_{i} K_{2}}{\alpha_{i}}-\sum_{i=1}^{N} \frac{a_{i} K_{2}}{\alpha_{i}} \mathrm{e}^{\alpha_{i} t_{1}} \mathrm{e}^{-\alpha_{i} t}+\sum_{j=1}^{N+2} C_{j}^{2} \sum_{i=1}^{N} \frac{a_{i}}{\alpha_{i}+q_{j}} \mathrm{e}^{q_{j} t}\right. \\
&-\sum_{i=1}^{N} a_{i}\left\{\sum_{j=1}^{N+2} \frac{C_{j}^{2}}{\alpha_{i}+q_{j}} \mathrm{e}^{\left(\alpha_{i}+q_{j}\right) t_{1}} \mathrm{e}^{-\alpha_{i} t}+\sum_{l=1, l \neq i}^{N} \frac{D_{l}}{\alpha_{i}-\alpha_{l}} \mathrm{e}^{\left(\alpha_{i}-\alpha_{i}\right) t}\right. \\
&\left.\left.-\sum_{l=1, l}^{N} \frac{D_{l}}{\alpha_{i}-\alpha_{l}} \mathrm{e}^{\left(\alpha_{i}-\alpha_{j}\right) t_{1}}+D_{i}\left(t-t_{1}\right)\right\}\right] \\
&= f_{0}+k \sum_{i=1}^{N} a_{i}\left\{\sum_{j=1}^{N+2} C_{j}^{1} \frac{\mathrm{e}^{\left(\alpha_{i}+p_{j}\right) t_{1}}-1}{\alpha_{i}+p_{j}}+K_{1} \frac{\mathrm{e}^{\alpha_{i} t_{1}}-1}{\alpha_{i}}\right\} \mathrm{e}^{-\alpha_{i} t} . \tag{17}
\end{align*}
$$

Comparing coefficients of t on either side of equation (17), it can be seen that $D_{l}=0$, $l=1,2, \ldots, N$. Also the characteristic equation, obtained by equating the coefficients of $\mathrm{e}^{q_{j} t}$, is

$$
\begin{equation*}
m q_{j}^{2}+c q_{j}+k-k \sum_{i=1}^{N} \frac{a_{i}}{\alpha_{i}+q_{j}}=0, \quad j=1,2, \ldots, N+2, \tag{18}
\end{equation*}
$$

which is same as equation (9). Hence $q_{j}=p_{j}, j=1,2, \ldots, N+2$. Substituting $D_{l}=0$ and $q_{j}=p_{j}$ in equation (17) and equating the constants as well as coefficients of $\mathrm{e}^{-\alpha_{i} t}$, the
following equations are obtained:

$$
\begin{align*}
K_{2} \frac{\mathrm{e}^{\alpha_{i} t_{1}}}{\alpha_{i}}+\sum_{j=1}^{N+2} C_{j}^{2} \frac{\mathrm{e}^{\left(\alpha_{i}+p_{j}\right) t_{1}}}{\alpha_{i}+p_{j}}=\{ & \left.\sum_{j=1}^{N+2} C_{j}^{1} \frac{\mathrm{e}^{\left(\alpha_{i}+p_{j}\right) t_{1}}-1}{\alpha_{i}+p_{j}}+K_{1} \frac{\mathrm{e}^{\alpha_{i} t_{1}}-1}{\alpha_{i}}\right\}, \quad i=1,2, \ldots, N \\
& K_{2}-K_{2} \sum_{i=1}^{N} \frac{a_{i}}{\alpha_{i}}=\frac{f_{0}}{k} \tag{19}
\end{align*}
$$

The initial conditions for the motion of the second half-cycle yield the following two equations:

$$
\begin{align*}
& K_{2}+\sum_{j=1}^{N+2} C_{j}^{2} \mathrm{e}^{p_{j} t_{1}}=x\left(t_{1}\right)=x_{1}, \tag{21}\\
& \sum_{j=1}^{N+2} C_{j}^{2} p_{j} \mathrm{e}^{p_{j} t_{1}}=\dot{x}\left(t_{1}\right)=\dot{x}_{1}=0 . \tag{22}
\end{align*}
$$

Equation (20) can be solved for the constant K_{2}. Then equations (19), (21) and (22) can be used to solve for the coefficient C_{j}^{2}. The time t_{1} is obtained from the solution of the transcendental equation

$$
\begin{equation*}
\sum_{j=1}^{N+2} C_{j}^{1} p_{j} \mathrm{e}^{p_{j} t_{1}}=0 . \tag{23}
\end{equation*}
$$

2.3. GENERAL RESPONSE FOR THE M th HALF-CYCLE

The above results can be generalized for characterizing the system response during the M th half-cycle, provided the initial displacement for the half-cycle is outside of the displacement interval, $-x_{s}<x<x_{s}$. The motion during the M th half-cycle $(M>1)$ can then be written as

$$
\begin{equation*}
x(t)=K_{M}+\sum_{j=1}^{N+2} C_{j}^{M} \mathrm{e}^{p_{j} t}, \quad t_{M-1} \leqslant t \leqslant t_{M} \tag{24}
\end{equation*}
$$

The substitution of this solution form into the governing equation of motion yields the following set of equations:

$$
\begin{gather*}
m p_{j}^{2}+c p_{j}+k-k \sum_{i=1}^{N} \frac{a_{i}}{\alpha_{i}+p_{j}}=0, \quad j=1,2, \ldots, N+2, \tag{25}\\
K_{M} \frac{\mathrm{e}^{\alpha_{i} t_{M-1}}}{\alpha_{i}}+\sum_{j=1}^{N+2} C_{j}^{M} \frac{\mathrm{e}^{\left(\alpha_{i}+p_{j}\right) t_{M-1}}}{\alpha_{i}+p_{j}} \\
=\sum_{m=1}^{M-1}\left\{K_{m} \frac{\mathrm{e}^{\alpha_{i} t_{m}}-\mathrm{e}^{\alpha_{i} t_{m-1}}}{\alpha_{i}}+\sum_{j=1}^{N+2} C_{j}^{m} \frac{\mathrm{e}^{\left(\alpha_{i}+p_{j}\right) t_{m}}-\mathrm{e}^{\left(\alpha_{i}+p_{j}\right) t_{m-1}}}{\alpha_{i}+p_{j}}\right\}, \quad i=1,2, \ldots, N, \tag{26}\\
K_{M}=\frac{(-1)^{M} f_{0}}{k\left(1-\sum_{i=1}^{N} a_{i} / \alpha_{i}\right)}, \tag{27}
\end{gather*}
$$

where $t_{0}=0$. The initial conditions for the M th half-cycle provide two additional equations:

$$
\begin{align*}
& K_{M}+\sum_{j=1}^{N+2} C_{j}^{M} \mathrm{e}^{p_{j} t_{M-1}}=x\left(t_{M-1}\right)=x_{M-1} \tag{28}\\
& \sum_{j=1}^{N+2} C_{j}^{M} p_{j} \mathrm{e}^{p_{j} t_{M-1}}=\dot{x}\left(t_{M-1}\right)=\dot{x}_{M-1}=0 \tag{29}
\end{align*}
$$

Here, t_{M-1} is the solution of the transcendental equation

$$
\begin{equation*}
\sum_{j=1}^{N+2} C_{j}^{M-1} p_{j} \mathrm{e}^{p_{j} t_{M-1}}=0 \tag{30}
\end{equation*}
$$

and x_{M-1} is given by

$$
\begin{equation*}
x_{M-1}=K_{M-1}+\sum_{j=1}^{N+2} C_{j}^{M-1} \mathrm{e}^{p_{j} t_{M-1}} \tag{31}
\end{equation*}
$$

The eigenvalues p_{j} can be determined from equation (25) by using a root-solving routine (see, e.g., reference [9]) or by reduction to an eigenvalue problem [3, 9]. Equation (27) gives the value of constant K_{M} for the M th half-cycle, while equations (26), (28) and (29) yield a linear system of $N+2$ equations in $N+2$ unknown complex coefficients C_{j}^{M}. In matrix form the equations for C_{j}^{M} can be written as

$$
\left[\begin{array}{cccc}
\frac{\mathrm{e}^{p_{1} t_{M-1}}}{\alpha_{1}+p_{1}} & \frac{\mathrm{e}^{p_{2} t_{M-1}}}{\alpha_{1}+p_{2}} & \cdots & \frac{\mathrm{e}^{p_{N+2} t_{M-1}}}{\alpha_{1}+p_{N+2}} \tag{32}\\
\frac{\mathrm{e}^{p_{1} t_{M-1}}}{\alpha_{2}+p_{1}} & \frac{\mathrm{e}^{p_{2} t_{M-1}}}{\alpha_{2}+p_{2}} & \cdots & \frac{\mathrm{e}^{p_{N+2} t_{M-1}}}{\alpha_{2}+p_{N+2}} \\
\cdots & \cdots & \cdots & \cdots \\
\frac{\mathrm{e}^{p_{1} t_{M-1}}}{\alpha_{N}+p_{1}} & \frac{\mathrm{e}^{p_{2} t_{M-1}}}{\alpha_{N}+p_{2}} & \cdots & \frac{\mathrm{e}^{p_{N+2} t_{M-1}}}{\alpha_{N}+p_{N+2}} \\
\mathrm{e}^{p_{1} t_{M-1}} & \mathrm{e}^{p_{2} t_{M-1}} & \cdots & \mathrm{e}^{p_{N+2} t_{M-1}} \\
p_{1} \mathrm{e}^{p_{1} t_{M-1}} & p_{2} \mathrm{e}^{p_{2} t_{M-1}} & \cdots & p_{N+2} \mathrm{e}^{p_{N+2} t_{M-1}}
\end{array}\right]\left[\begin{array}{c}
C_{1}^{M} \\
C_{1}^{M} \\
\cdots \\
\cdots \\
\cdots \\
C_{N+2}^{M}
\end{array}\right]=\left[\begin{array}{c}
R_{1} \\
R_{2} \\
\cdots \\
R_{N} \\
x_{M-1}-K_{M} \\
\dot{x}_{M-1}
\end{array}\right]
$$

where $\dot{x}_{M-1}=0$ for $M>1$, and

$$
\begin{equation*}
R_{i}=-\frac{K_{M}}{\alpha_{i}}+\mathrm{e}^{-\alpha_{i} t_{M-1}} \sum_{m=1}^{M-1}\left\{K_{m} \frac{\mathrm{e}^{\alpha_{i} t_{m}}-\mathrm{e}^{\alpha_{i} t_{m-1}}}{\alpha_{i}}+\sum_{j=1}^{N+2} C_{j}^{m} \frac{\mathrm{e}^{\left(\alpha_{i}+p_{j}\right) t_{m}}-\mathrm{e}^{\left(\alpha_{i}+p_{j}\right) t_{m-1}}}{\alpha_{i}+p_{j}}\right\} . \tag{33}
\end{equation*}
$$

This completes the process of finding the time response of the system, given the material and other physical parameters. Note that the eigenvalues p_{j} need to be distinct. If the eigenvalues are not all distinct then the general form of solution cannot be expressed by equation (6) and the proposed method cannot be applied. This case is not discussed in the present work.

3. IDENTIFICATION OF SYSTEM PARAMETERS AND ESTIMATION OF DRY FRICTION

In this section, we consider the inverse problem of estimation of the relevant system parameters: stiffness k, viscous damping c, viscoelastic parameter α_{i} and a_{i} and dry friction f_{0}, if the data from acceleration response $\ddot{x}(t)$ is available from an experiment. It may be
noted here that when using acceleration response, the constant component of the half-cycle response K_{M} is not explicitly known. The acceleration response for the M th half-cycle is assumed to be

$$
\begin{equation*}
\ddot{x}(t)=\sum_{j=1}^{N+2} C_{j}^{M} p_{j}^{2} \mathrm{e}^{p_{j} t} . \tag{34}
\end{equation*}
$$

For convenience, in addition, express K_{M} as

$$
\begin{equation*}
K_{M}=(-1)^{M} K_{0} \tag{35}
\end{equation*}
$$

where $K_{0}=f_{0} / k\left(1-\sum_{i=1}^{N}\left(a_{i} / \alpha_{i}\right)\right)$. The continuity of displacement $x(t)$ at $t=t_{M}$ yields

$$
\begin{equation*}
x_{M}=K_{M}+\sum_{j=1}^{N+2} C_{j}^{M} \mathrm{e}^{p_{j} t_{M}}=K_{M+1} \sum_{j=1}^{N+2} C_{j}^{M+1} \mathrm{e}^{p_{j} t_{M}} \tag{36}
\end{equation*}
$$

and hence

$$
\begin{equation*}
\frac{(-1)^{M}}{2} \sum_{j=1}^{N+2}\left\{C_{j}^{M+1}-C_{j}^{M}\right\} \mathrm{e}^{p_{t_{M}}}-K_{0}=0 \tag{37}
\end{equation*}
$$

For the identification process, the values of the times $t=t_{M}, M=1,2, \ldots, \widehat{M}$, must be known accurately. \hat{M} denotes the total number of half-cycles present in the response, until the motion decays into the equilibrium region. As shown in section $2.3, t_{M}$ is obtained by solving a transcendental equation for the zero-velocity condition (e.g., equation (30)), and will, in general, be obtained numerically.

3.1. CALCULATION OF p_{j}, C_{j}^{M}, AND K_{0}

Prony series [7] is a method that can be used to fit a sum of exponentials to data. The method consists of three stages. In the first stage, the data are used to find the coefficient of a polynomial whose zeros are related to the eigenvalues p_{j}. The second stage constitutes finding the zeros of the polynomial and hence obtaining the p_{j}. Since these coefficients are the same in each half-cycle, data from each half-cycle can be combined to determine an overall estimate of the polynomial coefficients, and subsequently the p_{j} [8]. In the third stage of the Prony series, equation (34) is used to determine the residues C_{j}^{M}, and since the p_{j} are known, this produces a set of linear equations for each half-cycle. However, equation (37) can also be incorporated into this estimation, so that the residues of all the half-cycles $C_{j}^{M}, j=1,2, \ldots, N+2$, and $M=1,2, \ldots, \widehat{M}$, and K_{0} can be estimated simultaneously. Furthermore, the condition of zero velocity at the times $t=t_{M}$ can be imposed as hard constraints on the estimation process, yielding a constrained least-squares estimation problem for the $C_{j}^{M}, M=1,2, \ldots, \widehat{M}$. These hard constraints, for M th half-cycle, can be expressed as

$$
\begin{equation*}
\sum_{j=1}^{N+2} C_{j}^{M} p_{j} \mathrm{e}^{p_{j} t_{M-1}}=0 \tag{38}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{j=1}^{N+2} C_{j}^{M} p_{j} \mathrm{e}^{p_{j} t_{M}}=0 \tag{39}
\end{equation*}
$$

These modifications would improve the accuracy of estimation in the presence of measurement noise and other uncertainties.

3.2. CALCULATION OF α_{i}

On substituting $M+1$ in place of M in equation (26),

$$
\begin{align*}
& K_{M+1} \frac{\mathrm{e}^{\alpha_{i} t_{M}}}{\alpha_{i}}+\sum_{j=1}^{N+2} C_{j}^{M+1} \frac{\mathrm{e}^{\left(\alpha_{i}+p_{j}\right) t_{M}}}{\alpha_{i}+p_{j}} \\
& \quad=\sum_{m=1}^{M}\left\{K_{m} \frac{\mathrm{e}^{\alpha_{i} t_{m}}-\mathrm{e}^{\alpha_{i} t_{m-1}}}{\alpha_{i}}+\sum_{j=1}^{N+2} C_{j}^{m} \frac{\mathrm{e}^{\left(\alpha_{i}+p_{j}\right) t_{m}}-\mathrm{e}^{\left(\alpha_{i}+p_{j}\right) t_{m-1}}}{\alpha_{i}+p_{j}}\right\}, \quad i=1,2, \ldots, N . \tag{40}
\end{align*}
$$

Subtracting equation (26) from equation (40) and using equation (35) for K_{M} gives

$$
\begin{equation*}
(-)^{M+1} 2 K_{0} \frac{\mathrm{e}^{\alpha_{i} t_{M}}}{\alpha_{i}}+\sum_{j=1}^{N+2}\left(C_{j}^{M+1}-C_{j}^{M}\right) \frac{\mathrm{e}^{\left(\alpha_{i}+p_{j}\right) t_{M}}}{\alpha_{i}+p_{j}}=0, \quad i=1,2, \ldots, N \tag{41}
\end{equation*}
$$

which can be further simplified to

$$
\begin{equation*}
(-)^{M+1} \frac{2 K_{0}}{\alpha_{i}}+\sum_{j=1}^{N+2} \frac{\left(C_{j}^{M+1}-C_{j}^{M}\right)}{\alpha_{i}+p_{j}} \mathrm{e}^{p_{j} t_{M}}=0, \quad i=1,2, \ldots, N . \tag{42}
\end{equation*}
$$

For any i, equation (42) gives rise to an $(N+2)$ th order polynomial-type equation in the unknown parameter α_{i}. However, the coefficients of the leading two terms are identically zero and the resulting reduced N th order polynomial equation can be solved for the α_{i}, $i=1,2, \ldots, N$. See Appendix A for a proof of this assertion.

3.3. CALCULATION OF a_{i}, k, AND c

Using the estimated $\alpha_{i}, i=1,2, \ldots, N$, equation (25) can be used to generate a system of $N+2$ linear equations, expressed as

$$
\left[\begin{array}{ccccc}
p_{1} & 1 & \frac{-1}{p_{1}+\alpha_{1}} & \cdots & \frac{-1}{p_{1}+\alpha_{N}} \tag{43}\\
p_{2} & 1 & \frac{-1}{p_{2}+\alpha_{1}} & \cdots & \frac{-1}{p_{2}+\alpha_{N}} \\
\ldots & \cdots & \ldots & \cdots & \cdots \\
\cdots & \cdots & \cdots & \cdots & \cdots \\
p_{N+2} & 1 & \frac{-1}{p_{N+2}+\alpha_{1}} & \cdots & \frac{-1}{p_{N+2}+\alpha_{N}}
\end{array}\right]\left[\begin{array}{c}
c \\
k \\
\tilde{a}_{1} \\
\cdots \\
\tilde{a}_{N}
\end{array}\right]=-m\left[\begin{array}{c}
p_{1}^{2} \\
p_{2}^{2} \\
\cdots \\
\cdots \\
p_{N+2}^{2}
\end{array}\right] .
$$

This linear system of equations can be solved to yield estimates of c, k and \tilde{a}_{i}, where $\tilde{a}_{i}=k a_{i}$. The coefficients a_{i} can then be calculated from \tilde{a}_{i} using the estimated value of the instantaneous stiffness k.

3.4. CALCULATION OF f_{0}

Knowing the values of α_{i}, a_{i}, k and K_{0}, the dry friction constant f_{0} can be determined from

$$
\begin{equation*}
f_{0}=k\left(1-\sum_{i=1}^{N} \frac{a_{i}}{\alpha_{i}}\right) K_{0} \tag{44}
\end{equation*}
$$

4. SUMMARY

A closed-form solution for the initial condition response of a viscoelastic dynamical system in the presence of dry friction has been presented. The response for any half-cycle is found to consist of a sum of exponentials and a constant term. Furthermore, assuming that the acceleration response is available as a sum of exponentials, a method has been suggested to estimate the system parameters including dry friction. The estimation technique is based on utilization of information from (at least) two consecutive half-cycles, although it is contended that an estimation based on utilization of information from many half-cycles would yield better results in the presence of measurement noise and other uncertainties.

REFERENCES

1. N. C. Hilyard, W. L. Lee and A. Cunningham 1991 Conference on Cellular Polymers, Forum Hotel, London, 187-191. Energy dissipation in polyurethane cushion foams and its role in dynamic ride comfort.
2. S. V. Krysov and V. A. Lazarev 1992 Soviet Journal of Friction and Wear 13, 13-18. To the Adirovich and Blokhintsev dry friction model. Consideration of material viscoelastic properties.
3. A. Muravyov and S. G. Hutton 1997 Journal of Applied Mechanics 64, 684-691. Closed form solutions and the eigenvalue problem for vibration of discrete viscoelastic systems.
4. J. W. Liang and B. F. Feeny 1996 Journal of Sound and Vibration 195, 149-154. A decrement method for simultaneous estimation of coulomb and viscous friction.
5. J. W. Liang and B. F. Feeny 1998 Nonlinear Dynamics 16, 337-347. Identifying coulomb and viscous friction from free-vibration decrements.
6. S. W. Shaw 1986 Journal of Sound and Vibration 108, 305-325. On the dynamic response of a system with dry friction.
7. S. L. Marple 1987 Digital Spectral Analysis: with Applications. Englewood Cliffs, NJ Prentice-Hall.
8. R. Singh, P. Davies and A. K. Bajaj 2000 A system identification technique for estimation of dynamical properties of polyurethane foam (in preparation).
9. W. H. Press, S. A. Teukolsky, W. T. Vetterling and B. P. Flannery 1995 Numerical Recipes in C. The Art of Scientific Computing, 369-379. Cambridge: University Press.

APPENDIX A: SOLUTION OF EQUATION (42) FOR α_{i}

Equation (42) can be put in the form

$$
\begin{equation*}
\frac{A_{0} \beta^{N+2}+A_{1} \beta^{N+1}+A_{2} \beta^{N}+A_{3} \beta^{N-1}+\cdots+A_{N+2}}{\beta\left(\beta+p_{1}\right)\left(\beta+p_{2}\right) \cdots\left(\beta+p_{N+2}\right)}=0 \tag{A1}
\end{equation*}
$$

where $\beta=\alpha_{i}$ is the only variable. Hence, α_{i} can be obtained by finding the roots of

$$
\begin{equation*}
A_{0} \beta^{N+2}+A_{1} \beta^{N+1}+A_{2} \beta^{N}+A_{3} \beta^{N-1}+\cdots+A_{N+2}=0 \tag{A2}
\end{equation*}
$$

Using equation (42), the coefficient A_{0} is given by

$$
\begin{equation*}
A_{0}=-2 K_{M}+\sum_{j=1}^{N+2}\left(C_{j}^{M+1}-C_{j}^{M}\right) \mathrm{e}^{p_{j} t_{M}} \tag{A3}
\end{equation*}
$$

Using equation (36), the relationship arising from the continuity of displacement at $t=t_{M}$ is

$$
\begin{equation*}
A_{0}=-2 K_{M}-K_{M+1}+K_{M}=0 \tag{A4}
\end{equation*}
$$

because $K_{M+1}=-K_{M}$.
The coefficient of α_{i}^{N+1} in equation (42) is A_{1}, and is given by

$$
\begin{align*}
A_{1}= & -2 K_{M} \sum_{j=1}^{N+2} p_{j}+\sum_{j=1}^{N+2}\left(C_{j}^{M+1}-C_{j}^{M}\right)\left(\sum_{l=1, l \neq j}^{N+2} p_{l}\right) \mathrm{e}^{p_{j} t_{M}} \\
= & -2 K_{M} \sum_{j=1}^{N+2} p_{j}+\sum_{j=1}^{N+2}\left(\sum_{l=1}^{N+2} p_{l}-p_{j}\right) C_{j}^{M+1} \mathrm{e}^{p_{j} t_{M}} \\
& -\sum_{j=1}^{N+2}\left(\sum_{l=1}^{N+2} p_{l}-p_{j}\right) C_{j}^{M} \mathrm{e}^{p_{j} t_{M}} \\
= & \left(\sum_{j=1}^{N+2} p_{j}\right)\left(-2 K_{M}+\sum_{j=1}^{N+2} C_{j}^{M+1} \mathrm{e}^{p_{j} t_{M}}-\sum_{j=1}^{N+2} C_{j}^{M} \mathrm{e}^{p_{j} t_{M}}\right) \\
& -\left(\sum_{j=1}^{N+2}\left(C_{j}^{M+1}-C_{j}^{M}\right) p_{j} \mathrm{e}^{p_{j} t_{M}}\right) . \tag{A5}
\end{align*}
$$

Using the velocity-continuity relationship

$$
\begin{equation*}
\dot{x}_{M}=\sum_{j=1}^{N+2} p_{j} C_{j}^{M} \mathrm{e}^{p_{j} t_{M}}=\sum_{j=1}^{N+2} p_{j} C_{j}^{M+1} \mathrm{e}^{p_{j} t_{M}} \tag{A6}
\end{equation*}
$$

and the displacement-continuity relationship (36) in equation (A5) yields

$$
\begin{aligned}
A_{1} & =\left(\sum_{j=1}^{N+2} p_{j}\right)\left(-2 K_{M}+\left(x_{M}-K_{M+1}-\left(x_{M}-K_{M}\right)\right)-\dot{x}_{M}+\dot{x}_{M}\right. \\
& =\left(\sum_{j=1}^{N+2} p_{j}\right)\left(-2 K_{M}-K_{M+1}+K_{M}\right)=0 .
\end{aligned}
$$

Thus the leading two coefficients are zero, which makes equation (A2) of order N. It can further be proved that $A_{2} \neq 0$. For example, for the case $N=1, A_{2}=\left(2 k K_{M} / m\right)$ $(-1+a / \alpha) . A_{2}$ will be zero only when $a=\alpha$, which represents the case of marginal stability (zero eigenvalue) for a system with $N=1$.

