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1. INTRODUCTION

Physical systems exhibit several mechanisms for loss of energy. Depending upon acceptable
levels of approximations for a particular system, one or more models for di!erent damping
mechanisms would need to be incorporated into a model of the system. Viscous and
Coulomb friction are among the most commonly used models for damping in elastic solids.
Viscoelastic solids, such as foam, are known to exhibit several mechanisms for loss of energy
[1]. These include small strain viscoelastic damping of the cellular matrix, pneumatic
damping, hysteresis at medium to large deformations and thermal energy dissipation. Also,
energy loss occurs because of excitation and emission of elastic waves resulting from
interaction of rubbing surfaces in the viscoelastic medium, which can be described by a dry
friction model [2].

For a dynamic viscoelastic system, a simple model can be developed by using a
linear constitutive relation for the stress}strain behavior of the material. Hereditary models
of viscoelasticity are popular candidates for this purpose. In the case of a
single-degree-of-freedom dynamic system, the characteristics of the viscoelastic solid can be
modelled by means of linear sti!ness and viscous damping terms along with certain
viscoelastic terms. One such model has been considered by Muravyov and Hutton [3],
where the authors have presented a closed-form solution for the response of the system. In
the present work, we have used this model to develop a procedure for obtaining the free
response of the system in the presence of dry friction.

In the case of elastic systems, the free vibration response can be utilized for estimation of
viscous and Coulomb friction e!ects [4, 5]. Here we utilize the free response solution
developed for the viscoelastic system with dry friction, along with a modi"ed Prony series
modelling technique [7] for estimating the parameters of the system. The acceleration
response of the system to arbitrary initial velocities is used for the estimation procedure,
because in an actual experiment with such systems, the acceleration would typically be the
measured response variable.

2. INITIAL CONDITION RESPONSE

Consider a linear single-degree-of-freedom dynamic system where the restoring forces are
attributed to a linear viscoelastic material. The stress}strain relationship for such a material
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can be expressed as

p (t)"EGe(t)!P
t

0

C (t!q)e(q) dqH, (1)

where C(t) is the relaxation kernel of the material and E is the instantaneous Young's
modulus. A common form of the relaxation kernel often used in the literature is that in the
form of a sum of exponentials:

C(t)"
N
+
i/1

a
i
e~ait . (2)

The equation of motion of the dynamical system then becomes

mxK#cxR #kx!kP
t

0

N
+
i/1

a
i
e~ai(t~q)x(q) dq"!f (t), (3)

where x represents the displacement of the mass m from the equilibrium position (x*), c and
k are the viscous damping coe$cient and sti!ness of the system, and a

i
and a

i
are the

viscoelastic material parameters. The motion is assumed to start at time t"0. The initial
displacement x(0) is taken to be zero to avoid ambiguity in the assumed model. x(0)"0 is
implied by the lower limit of the integral being zero which represents the fact that x(t)"0,
for t(0. f (t) represents the dry friction force, modelled by Coulomb friction as
f (t)"f

0
sgn(xR ), xR O0, where f

0
is a constant representing the kinetic friction force. Note that

the uncertainty in the determination of dry friction at zero velocity leads to a corresponding
uncertainty in locating the equilibrium point. Consequently, a &&sticky'' region for the
location of the equilibrium positions exists, given by !x

s
)x*)x

s
, where

x
s
"f

s
/k(1!+N

i/1
a
i
/a

i
), and f

s
is the maximum static friction force.

For xR O0, equation (3) is piecewise solvable, and can be written as

mxK#cxR #kx!kP
t

0

N
+
i/1

a
i
e~ai(t~q)x(q) dq"!f

0
, xR '0, (4)

mxK#cxR #kx!kP
t

0

N
+
i/1

a
i
e~ai(t~q)x(q) dq"f

0
, xR (0. (5)

Each continuous piece of motion during which velocity does not change sign is called
a half-cycle. In the absence of dry friction, the solution of equation (3) will consist of N#2
exponentials [3] (except when the system eigenvalues are not all distinct). Dry friction
introduces an additional constant term (DC) in the solution. It will be shown below that, in
the presence of dry friction, the solution for the ith half-cycle is of the form

x (t)"K
i
#

N`2
+
j/1

Ci
j
epjt , i"1, 2, 3,2, (6)

where K
i
and the coe$cients Ci

j
are constants, which are di!erent for each half-cycle of the

response. Since the homogeneous solution of the above equations remains the same in each
half-cycle, the coe$cients p

j
in the exponential terms do not change from one half-cycle to

another. The closed form solution, in di!erent half-cycles, is derived here by substituting the
above solution form into the di!erential equation and using the initial conditions at the
start of the half-cycles.
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2.1. MOTION DURING THE FIRST HALF-CYCLE

Suppose the initial conditions for the response are such that xR (0)'0. Then, for the "rst
half-cycle of the motion when xR (t)*0, the response is governed by equation (4). Let the
solution be

x (t)"K
1
#

N`2
+
j/1

C1
j
epjt , 0)t)t

1
, (7)

where the subscript on K and the superscript on C
j
indicate correspondence to the "rst

half-cycle, and time t
1

is such that xR (t
1
)"0. The constant K

1
denotes the contribution of

the particular solution arising because of friction. Substitution of equation (7) into equation
(4) yields

m
N`2
+
j/1

C1
j
p2
j
epjt#c

N`2
+
j/1

C1
j
p
j
epjt#kGK1

#

N`2
+
j/1

C1
j
epjtH

!kK
1

N
+
i/1

a
i

a
i

(1!e~ait)!k
N`2
+
j/1

C1
j

N
+
i/1

a
i

e(ai`pj)t!1

a
i
#p

j

e~ait"!f
0
. (8)

By regrouping and equating the constants, the coe$cients of epjt , and the coe$cients of e~ait
on either sides of equation (8), the following equations are obtained:

mp2
j
#cp

j
#k!k

N
+
i/1

a
i

a
i
#p

j

"0, j"1, 2,2,N#2, (9)

K
1

a
i

#

N`2
+
j/1

C1
j

a
i
#p

j

"0, i"1, 2,2,N, (10)

K
1
!K

1

N
+
i/1

a
i

a
i

"!

f
0
k

. (11)

The initial conditions yield two additional equations:

K
1
#

N`2
+
j/1

C1
j
"x(0)"0,

N`2
+
j/1

C1
j
p
j
"xR (0)"xR

0
. (12, 13)

Equation (9) is the characteristic equation of the system, whose roots are the coe$cients p
j
,

j"1, 2,2,N#2, which are the eigenvalues of the system. The solution to equation (11)
yields K

1
, while the coe$cients C1

j
can be obtained by solving a set of N#2 linear

equations, given by equations (10), (12) and (13). Here it is assumed that the eigenvalues are
all distinct.

2.2. MOTION DURING THE SECOND HALF-CYCLE

In this part of the motion, velocity is negative. The equation of motion thus takes the form

mxK#cxR #kx!kP
t1

0

N
+
i/1

a
i
e~ai(t~q)x(q) dq

!kP
t

t1

N
+
i/1

a
i
e~ai(t~q)x(q) dq"f

0
, t

1
)t)t

2
, (14)
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where x (q) in the "rst integral is already known from the "rst half-cycle and is given by
equation (7). This integral represents the &&memory'' the system has of its motion during the
"rst half-cycle. Substituting x(t), t)t

1
, from equation (7) into equation (14) results in

mxK#cxR #kx!kP
t

t1

N
+
i/1

a
i
e~ai(t~q)x(q) dq

"f
0
#k

N
+
i/1

a
iGK1A

e~ait1!1

a
i

B#
N`2
+
j/1

C1
j A

e(ai`pj)t1!1

a
i
#p

j
BHe~ait . (15)

Thus, the motion of the system during the "rst half-cycle contributes N extra terms to the
forcing function. The most general form of solution will have 2N#3 terms and can be
written as

x(t)"K
2
#

N`2
+
j/1

C2
j
eqjt#

N
+
l/1

D
l
e~alt , (16)

where the exponents q
j
correspond to the homogeneous solution. Substituting equation (16)

into equation (15), we get

mG
N`2
+
j/1

C2
j
q2
j
eqjt#

N
+
l/1

D
l
a2
l
e~aitH#cG

N`2
+
j/1

C2
j
q
j
eqjt!

N
+
l/1

D
l
a
l
e~altH

#kGK
2
#

N`2
+
j/1

C2
j
eqjt#

N
+
l/1

D
l
e~altH

!kC
N
+
i/1

a
i
K

2
a
i

!

N
+
i/1

a
i
K

2
a
i

eait1e~ai t#
N`2
+
j/1

C2
j

N
+
i/1

a
i

a
i
#q

j

eqjt

!

N
+
i/1

a
iG

N`2
+
j/1

C2
j

a
i
#q

j

e(ai`qj)t1e~ai t#
N
+

l/1, lOi

D
l

a
i
!a

l

e(ai~al)t

!

N
+

l/1, lOi

D
l

a
i
!a

l

e(ai~al)t1#D
i
(t!t

1
)HD

"f
0
#k

N
+
i/1

a
iG

N`2
+
j/1

C1
j

e(ai`pj)t1!1

a
i
#p

j

#K
1

eait1!1

a
i
He~ait . (17)

Comparing coe$cients of t on either side of equation (17), it can be seen that D
l
"0,

l"1, 2,2,N. Also the characteristic equation, obtained by equating the coe$cients of eqjt ,
is

mq2
j
#cq

j
#k!k

N
+
i/1

a
i

a
i
#q

j

"0, j"1, 2,2,N#2, (18)

which is same as equation (9). Hence q
j
"p

j
, j"1, 2,2,N#2. Substituting D

l
"0 and

q
j
"p

j
in equation (17) and equating the constants as well as coe$cients of e~ait, the
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following equations are obtained:

K
2

eait1
a
i

#

N`2
+
j/1

C2
j

e(ai`pj)t1

a
i
#p

j

"G
N`2
+
j/1

C1
j

e(ai`pj)t1!1

a
i
#p

j

#K
1

eait1!1

a
i
H , i"1, 2,2,N,

(19)

K
2
!K

2

N
+
i/1

a
i

a
i

"

f
0
k

. (20)

The initial conditions for the motion of the second half-cycle yield the following two
equations:

K
2
#

N`2
+
j/1

C2
j
epjt1"x(t

1
)"x

1
, (21)

N`2
+
j/1

C2
j
p
j
epjt1"xR (t

1
)"xR

1
"0. (22)

Equation (20) can be solved for the constant K
2
. Then equations (19), (21) and (22) can be

used to solve for the coe$cient C2
j
. The time t

1
is obtained from the solution of the

transcendental equation

N`2
+
j/1

C1
j
p
j
epjt1"0. (23)

2.3. GENERAL RESPONSE FOR THE Mth HALF-CYCLE

The above results can be generalized for characterizing the system response during the
Mth half-cycle, provided the initial displacement for the half-cycle is outside of the
displacement interval, !x

s
(x(x

s
. The motion during the Mth half-cycle (M'1) can

then be written as

x(t)"K
M
#

N`2
+
j/1

CM
j

epjt, t
M~1

)t)t
M

. (24)

The substitution of this solution form into the governing equation of motion yields the
following set of equations:

mp2
j
#cp

j
#k!k

N
+
i/1

a
i

a
i
#p

j

"0, j"1, 2,2,N#2, (25)

K
M

eaitM~1

a
i

#

N`2
+
j/1

CM
j

e(ai`pj)tM~1

a
i
#p

j

"

M~1
+

m/1
GKm

eaitm!eaitm~1

a
i

#

N`2
+
j/1

Cm
j

e(ai`pj)tm!e(ai`pj)tm~1

a
i
#p

j
H , i"1, 2,2,N, (26)

K
M
"

(!1)Mf
0

k (1!+N
i/1

a
i
/a

i
)
, (27)
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where t
0
"0. The initial conditions for the Mth half-cycle provide two additional

equations:

K
M
#

N`2
+
j/1

CM
j

epjtM~1"x(t
M~1

)"x
M~1

, (28)

N`2
+
j/1

CM
j

p
j
epjtM~1"xR (t

M~1
)"xR

M~1
"0. (29)

Here, t
M~1

is the solution of the transcendental equation

N`2
+
j/1

CM~1
j

p
j
epjtM~1"0 (30)

and x
M~1

is given by

x
M~1

"K
M~1

#

N`2
+
j/1

CM~1
j

epjtM~1. (31)

The eigenvalues p
j
can be determined from equation (25) by using a root-solving routine

(see, e.g., reference [9]) or by reduction to an eigenvalue problem [3, 9]. Equation (27) gives
the value of constant K

M
for the Mth half-cycle, while equations (26), (28) and (29) yield

a linear system of N#2 equations in N#2 unknown complex coe$cients CM
j

. In matrix
form the equations for CM

j
can be written as

ep1tM~1

a
1
#p

1

ep2tM~1

a
1
#p

2

2

epN`2tM~1

a
1
#p

N`2
ep1tM~1

a
2
#p

1

ep2tM~1

a
2
#p

2

2

epN`2tM~1

a
2
#p

N`2
2 2 2 2

ep1tM~1

a
N
#p

1

ep2tM~1

a
N
#p

2

2

epN`2tM~1

a
N
#p

N`2
ep1tM~1 ep2tM~1 2 epN`2tM~1

p
1
ep1tM~1 p

2
ep2tM~1 2 p

N`2
epN`2tM~1

CM
1

CM
1

2

2

2

CM
N`2

"

R
1

R
2

2

R
N

x
M~1

!K
M

xR
M~1

, (32)

where xR
M~1

"0 for M'1, and

R
i
"!

K
M

a
i

#e~aitM~1
M~1
+

m/1
GKm

eaitm!eaitm~1

a
i

#

N`2
+
j/1

Cm
j

e(ai`pj)tm!e(ai`pj)tm~1

a
i
#p

j
H . (33)

This completes the process of "nding the time response of the system, given the material and
other physical parameters. Note that the eigenvalues p

j
need to be distinct. If the

eigenvalues are not all distinct then the general form of solution cannot be expressed by
equation (6) and the proposed method cannot be applied. This case is not discussed in the
present work.

3. IDENTIFICATION OF SYSTEM PARAMETERS AND ESTIMATION OF DRY FRICTION

In this section, we consider the inverse problem of estimation of the relevant system
parameters: sti!ness k, viscous damping c, viscoelastic parameter a

i
and a

i
and dry friction

f
0
, if the data from acceleration response xK (t) is available from an experiment. It may be
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noted here that when using acceleration response, the constant component of the half-cycle
response K

M
is not explicitly known. The acceleration response for the Mth half-cycle is

assumed to be

xK (t)"
N`2
+
j/1

CM
j

p2
j
epjt . (34)

For convenience, in addition, express K
M

as

K
M
"(!1)MK

0
, (35)

where K
0
"f

0
/k(1!+N

i/1
(a

i
/a

i
) ). The continuity of displacement x(t) at t"t

M
yields

x
M
"K

M
#

N`2
+
j/1

CM
j

epjtM"K
M`1

N`2
+
j/1

CM`1
j

epjtM (36)

and hence

(!1)M

2

N`2
+
j/1

MCM`1
j

!CM
j

NepjtM!K
0
"0. (37)

For the identi"cation process, the values of the times t"t
M

, M"1, 2,2, MK , must be
known accurately. MK denotes the total number of half-cycles present in the response, until
the motion decays into the equilibrium region. As shown in section 2.3, t

M
is obtained by

solving a transcendental equation for the zero-velocity condition (e.g., equation (30)), and
will, in general, be obtained numerically.

3.1. CALCULATION OF p
j
, CM

j
, AND K

0

Prony series [7] is a method that can be used to "t a sum of exponentials to data. The
method consists of three stages. In the "rst stage, the data are used to "nd the coe$cient of
a polynomial whose zeros are related to the eigenvalues p

j
. The second stage constitutes

"nding the zeros of the polynomial and hence obtaining the p
j
. Since these coe$cients are

the same in each half-cycle, data from each half-cycle can be combined to determine an
overall estimate of the polynomial coe$cients, and subsequently the p

j
[8]. In the third

stage of the Prony series, equation (34) is used to determine the residues CM
j

, and since the
p
j
are known, this produces a set of linear equations for each half-cycle. However, equation

(37) can also be incorporated into this estimation, so that the residues of all the half-cycles
CM

j
, j"1, 2,2,N#2, and M"1, 2,2,MK , and K

0
can be estimated simultaneously.

Furthermore, the condition of zero velocity at the times t"t
M

can be imposed as hard
constraints on the estimation process, yielding a constrained least-squares estimation
problem for the CM

j
, M"1, 2,2, MK . These hard constraints, for Mth half-cycle, can be

expressed as

N`2
+
j/1

CM
j

p
j
epjtM~1"0 (38)

and

N`2
+
j/1

CM
j

p
j
epjtM"0. (39)
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These modi"cations would improve the accuracy of estimation in the presence of
measurement noise and other uncertainties.

3.2. CALCULATION OF a
i

On substituting M#1 in place of M in equation (26),

K
M`1

eaitM
a
i

#

N`2
+
j/1

CM`1
j

e(ai`pj)tM

a
i
#p

j

"

M
+

m/1
GKm

eaitm!eaitm~1

a
i

#

N`2
+
j/1

Cm
j

e(ai`pj)tm!e(ai`pj)tm~1

a
i
#p

j
H , i"1, 2,2, N. (40)

Subtracting equation (26) from equation (40) and using equation (35) for K
M

gives

(!)M`1 2K
0

eaitM
a
i

#

N`2
+
j/1

(CM`1
j

!CM
j

)
e(ai`pj)tM

a
i
#p

j

"0, i"1, 2,2,N, (41)

which can be further simpli"ed to

(!)M`1
2K

0
a
i

#

N`2
+
j/1

(CM`1
j

!CM
j

)

a
i
#p

j

epjtM"0, i"1, 2,2,N. (42)

For any i, equation (42) gives rise to an (N#2)th order polynomial-type equation in the
unknown parameter a

i
. However, the coe$cients of the leading two terms are identically

zero and the resulting reduced Nth order polynomial equation can be solved for the a
i
,

i"1, 2,2,N. See Appendix A for a proof of this assertion.

3.3. CALCULATION OF a
i
, k, AND c

Using the estimated a
i
, i"1, 2,2, N, equation (25) can be used to generate a system of

N#2 linear equations, expressed as

p
1

1
!1

p
1
#a

1

2

!1

p
1
#a

N

p
2

1
!1

p
2
#a

1

2

!1

p
2
#a

N

2 2 2 2 2

2 2 2 2 2

p
N`2

1
!1

p
N`2

#a
1

2

!1

p
N`2

#a
N

c

k

aJ
1

2

aJ
N

"!m

p2
1

p2
2

2

2

p2
N`2

. (43)
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This linear system of equations can be solved to yield estimates of c, k and aJ
i
, where aJ

i
"ka

i
.

The coe$cients a
i

can then be calculated from aJ
i

using the estimated value of the
instantaneous sti!ness k.

3.4. CALCULATION OF f
0

Knowing the values of a
i
, a

i
, k and K

0
, the dry friction constant f

0
can be determined

from

f
0
"kA1!

N
+
i/1

a
i

a
i
BK

0
. (44)

4. SUMMARY

A closed-form solution for the initial condition response of a viscoelastic dynamical
system in the presence of dry friction has been presented. The response for any half-cycle is
found to consist of a sum of exponentials and a constant term. Furthermore, assuming that
the acceleration response is available as a sum of exponentials, a method has been suggested
to estimate the system parameters including dry friction. The estimation technique is based
on utilization of information from (at least) two consecutive half-cycles, although it is
contended that an estimation based on utilization of information from many half-cycles
would yield better results in the presence of measurement noise and other uncertainties.
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APPENDIX A: SOLUTION OF EQUATION (42) FOR a
i

Equation (42) can be put in the form

A
0
bN`2#A

1
bN`1#A

2
bN#A

3
bN~1#2#A

N`2
b(b#p

1
) (b#p

2
)2(b#p

N`2
)

"0, (A1)
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where b"a
i
is the only variable. Hence, a

i
can be obtained by "nding the roots of

A
0
bN`2#A

1
bN`1#A

2
bN#A

3
bN~1#2#A

N`2
"0. (A2)

Using equation (42), the coe$cient A
0

is given by

A
0
"!2K

M
#

N`2
+
j/1

(CM`1
j

!CM
j

)epjtM . (A3)

Using equation (36), the relationship arising from the continuity of displacement at t"t
M

is

A
0
"!2K

M
!K

M`1
#K

M
"0, (A4)

because K
M`1

"!K
M

.
The coe$cient of aN`1

i
in equation (42) is A

1
, and is given by

A
1
"!2K

M

N`2
+
j/1

p
j
#

N`2
+
j/1

(CM`1
j

!CM
j

) A
N`2
+

l/1,lOj

p
lBepjtM

"!2K
M

N`2
+
j/1

p
j
#

N`2
+
j/1
A
N`2
+
l/1

p
l
!p

jBCM`1
j

epjtM

!

N`2
+
j/1
A
N`2
+
l/1

p
l
!p

jBCM
j
epjtM

"A
N`2
+
j/1

p
jBA!2K

M
#

N`2
+
j/1

CM`1
j

epjtM!
N`2
+
j/1

CM
j
epjtMB

!A
N`2
+
j/1

(CM`1
j

!CM
j
) p

j
epjtMB. (A5)

Using the velocity-continuity relationship

xR
M
"

N`2
+
j/1

p
j
CM

j
epjtM"

N`2
+
j/1

p
j
CM`1

j
epjtM (A6)

and the displacement-continuity relationship (36) in equation (A5) yields

A
1
"A

N`2
+
j/1

p
jB (!2K

M
#(x

M
!K

M`1
!(x

M
!K

M
))!xR

M
#xR

M

"A
N`2
+
j/1

p
jB (!2K

M
!K

M`1
#K

M
)"0.

Thus the leading two coe$cients are zero, which makes equation (A2) of order N. It can
further be proved that A

2
O0. For example, for the case N"1, A

2
"(2kK

M
/m)

(!1#a/a). A
2
will be zero only when a"a, which represents the case of marginal stability

(zero eigenvalue) for a system with N"1.
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